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Abstract. In the paper the role of long range interactions on the growth of a volume conserving surface is
studied using the Nonlocal Conserved Kardar-Parisi-Zhang (NCKPZ) equation. It is shown that previous
theoretical predictions are inconsistent with an exact one-dimensional result. This serves as a motivation
for construction of a Self-Consistent Expansion (SCE) that recovers the exact one-dimensional result, and
gives the scaling exponents in higher dimensions as well. A possible application of this result to colloidal
systems is discussed.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 02.50.-r Probability theory, stochastic
processes, and statistics

Kinetic roughening of nonequilibrium interfaces is today
a paradigmatic problem for theoretical tools in the field
of nonequilibrium statistical physics and disordered
systems, apart from being of practical importance.
Therefore, it is not surprising that this phenomena has
received much attention during the last two decades
[1,2]. A common feature of many interfaces observed
experimentally and in discrete growth models is that
their roughening follows simple scaling laws [3]. The
morphology and dynamics of a rough interface can be
characterized by the surface width, W (L, t), that scales as

W (L, t)=
1√
L

〈∑
r

[
h (r, t)−h̄ (t)

]2
〉1/2

= Lαf

(
t

Lz

)
, (1)

where h (r, t) describes the height of the interface above
the point r at time t and h̄ (t) is the mean height of the
interface at time t. α is the roughness exponent of the
interface, z is the dynamic exponent that describes the
scaling of the relaxation time with L — which is the size
of the system. The brackets 〈· · · 〉 denotes noise averag-
ing. The scaling function f (u) behaves like f (u) ∼ u1/z

for small u’s (i.e. for t � Lz) and like a constant (i.e.
f (u) ∼ const) for large u’s (i.e. for t � Lz). The scaling
exponents α and z describe the asymptotic behavior of
the growing interface in the hydrodynamic limit. There-
fore, these quantities form the basic categories by which
different models can be classified — namely universality
classes.

The most prominent example for this scaling proper-
ties is, no doubt, the famous Kardar-Parisi-Zhang (KPZ)
equation [2] that was formulated in order to describe a
growing interface due to ballistic deposition. Actually, the
KPZ equation is now considered to describe a very large
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class of different phenomena such as fluid flow in porous
media, propagation of flame fronts, flux lines in super-
conductors not to mention deposition processes, bacterial
growth and “DNA walk” [1]. In more technical terms, all
these examples form the KPZ universality class.

The success of the KPZ equation in describing deposi-
tion phenomena motivated many researchers to develop a
continuum growth model for volume conserving surfaces
such as the technologically important molecular beam
epitaxy (MBE) process [4–10]. The physical mechanism
that distinguishes MBE from previously discussed growth
processes is the surface diffusion of the deposited particles.
It is well-known that in the temperature range of MBE
growth, desorption of atoms and formation of overhangs
and bulk defects is negligibly small. As a consequence the
continuum model describing this processes must conserve
the number of particles on the interface. The introduction
of conservation laws into the growth equations forms
new universality classes in surface phenomena, such as
the one described by the Conserved Kardar-Parisi-Zhang
(CKPZ) equation given by

∂h (r, t)
∂t

= −K∇4h (r, t) − λ

2
∇2 (∇h)2 + η (r, t), (2)

where K is a diffusion constant, λ is the coupling con-
stant, and η (r, t) is a conservative noise term (to be de-
fined in Eq. (4) below). Still, the conserved KPZ model is
not considered today as a realistic continuum model for
MBE processes. The conserved KPZ model does not in-
clude the effects of step-edge barriers and the phenomenon
of slope selection, that are experimentally well-known to
dominate the MBE growth at long times. However, the
MBE phenomenon will not be further discussed here for
two reasons. First, as will be shown, already this simple
model and its extensions elicit methodological difficulties
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that are explicitly addressed in this work. Second, there
are other volume conserving growing surface whose prop-
erties can be described using this approach. One process
of this kind is kinetic roughening in colloidal systems [14].
Yet, in that system one needs to account for the long-
range hydrodynamic interactions that are known to ex-
ist [15,16] between the deposited particles and the surface
below. Actually, even a simpler system of two colloidal
particles diffusing in a fluid exhibit such long range in-
teractions [17,18], with the difference that while for the
two-body interaction explicit theoretical predictions can
be made, for the interaction between a single particle and
an interface below no prediction is available.

Interestingly, a model that captures both the long-
range interactions and the mass conservations is known
in the literature, namely the Nonlocal Conserved KPZ
(NCKPZ) equation presented by [19,20]. The continuum
equation for the height of the surface h (r, t) at a point r
and time t measured relative to its spatial average is

∂h (r, t)
∂t

= −K∇4h (r, t) − 1
2
∇2

∫
ddr′g (r′)

×∇h (r + r′, t) · ∇h (r−r′, t) + η (r, t), (3)

where K is a constant, the kernel g (r) represents the
long-range interactions with a short-range part λ0δ

d (r)
and a long-range part ∼λρr

ρ−d, where d is the sub-
strate dimension and ρ is an exponent characterizing
the decay of the long range interaction. More precisely
in Fourier space ĝ (q) = λ0 + λρq

−ρ. Finally, η (r, t) is
a conservative spatially correlated noise term that satisfies

〈η (r, t)〉 = 0

〈η (r, t) η (r′, t)〉 ∼ ∇2 |r − r′|2σ−d
δ (t − t′), (4)

where σ is an exponent characterizing the decay of spatial
correlations (in the case of conservative white noise , which
is of great interest in physical systems, σ = 0).

In the next section I will present the current theoret-
ical predictions for the scaling exponents of the NCKPZ
model. It will become evident that all those results are in-
consistent with an exact one-dimensional result obtained
in the past. Then, in Section 3 the Self-Consistent Ex-
pansion (SCE) approach will be applied to this model.
Interestingly, this method yields results that are consis-
tent with the exact one-dimensional result. In addition,
results for higher dimensions and for general ρ’s are pre-
sented. Eventually, a discussion and a summary are given
in Section 4.

After suggesting the model, Jung et al. [19,20] inves-
tigated the NCKPZ problem using the Dynamic Renor-
malization Group (DRG) method [1], and derived a very
rich and complex picture of phases — each one of them
described by a different set of critical exponents. In this
paper I will not go into the details of all those phases,
but would like to focus on the strong coupling behavior
of NCKPZ. In this regime the DRG analysis yields the
power counting result

αDRG =
2 − d − ρ + 2σ

3
zDRG =

d + 10 − 2ρ − 2σ

3
,

(5)

where α is the roughness exponent and z is the dynamic
exponent. This solution is said to valid for positive values
of ρ and for d < 2 + 2ρ + 2σ.

Lately, another method, which proved useful in the
context of local growth problems, was also applied to the
NCKPZ problem. The method, is a Flory-type scaling
approach that was originally proposed by Hentschel and
Family [21] and generalized by Tang and Ma [22,23] to
the nonlocal case. Interestingly, the authors claim that
the DRG results presented in equation (5) above are just
the weak-coupling exponents, while the strong-coupling
dynamical exponents, obtained by using the scaling
approach, are

αSA =
2 − ρ

d + 3 − 2σ
zSA = 4 − ρ − 2 − ρ

d + 3 − 2σ
. (6)

Surprisingly, both results do not agree with an exact result
that is possible for some one-dimensional cases (namely
for λ0 = 0 and ρ = 2 + 2σ) of the NCKPZ problem.
The exact result is obtained in reference [24] using the
Fokker-Planck form associated with the Langevin form
of NCKPZ equation given in equation (3) above. The
exact values of the scaling exponents in one-dimension
for λ0 = 0 and ρ = 2 + 2σ are

αexact =
ρ − 1

2
zexact =

9 − 3ρ

2
. (7)

These exact results indicates that both methods (DRG
and the scaling approach) are unreliable already in one
dimension (not to mention higher dimensions). The in-
evitable conclusion is that in order to gain insight into
the behavior of the NCKPZ model in any dimension, and
for any value of ρ (the nonlocal parameter) and σ (the
long-range noise parameter) it is necessary to employ a
more reliable method.

The last point serves as another important motivation
for this work. Namely, this model serves as a test case
for the various theoretical tools that are available in this
field. Thus, it might help to improve the current tools
statistical physicists are using, so that more realistic and
rich theories could be dealt with efficiently in the future.

In the following a method developed by Schwartz and
Edwards [13,26,27] (also known as the Self-Consistent-
Expansion (SCE) approach) is applied to the NCKPZ
problem. This method has been previously applied suc-
cessfully to the KPZ equation, and thus gained much
credit by being able to give a sensible prediction for
the KPZ critical exponents in the strong coupling phase,
where, as is well-known, many Renormalization-Group
(RG) approaches failed (as well as DRG of course) [28,29].
For the specific problem of NCKPZ, the SCE method indi-
cates that two strong coupling solutions exist, one of which
agrees with the power counting solution also obtained by
DRG (presented in Eq. (5) above), while the other one re-
covers the exact one-dimensional result (and also extends
it to higher dimensions). It turns out that each solution
is valid for different values of the parameters σ, ρ and d
(mutually excluding values).

R
apide N

ote R
ap

id
 N

ot
e



E. Katzav: Effect of long range interactions on the growth of compact clusters under deposition 139

The SCE method is based on going over from the
Fourier transform of the equation in Langevin form,
namely from

∂hq

∂t
= −Kq4hq − λρq

2−ρ

√
Ω

∑
�,m

(� · m) δq,�+mh�hm + ηq,

(8)

where ηq is the Fourier component of the noise that satis-
fies:

〈ηq (t)〉 = 0

〈ηq (t) ηq′ (t′)〉 = 2D0q
2−2σδq+q′δ (t − t′), (9)

to a Fokker-Planck form, namely to

∂P

∂t
+

∑
q

∂

∂hq

[
D0q

2−2σ ∂

∂h−q
+ Kq4hq

+
λρq

2−ρ

√
Ω

∑
�,m

(� · m) δq,�+mh�hm

⎤
⎦P = 0, (10)

(where P ({hq}, t) is the probability of having the con-
figuration {hq} at a specific time t). and constructing a
self-consistent expansion of the distribution of the height
field (namely an expansion for P ({hq}, t)).

The expansion is formulated in terms of φq and ωq,
where φq is the two-point function in momentum space,
defined by φq = 〈hqh−q〉S , (the subscript S denotes steady
state averaging), and ωq is the characteristic frequency
associated with hq. It is expected that for small enough
q’s, φq and ωq obey the power laws in q

φq = Aq−Γ and ωq = Bqz, (11)

where z is just the dynamic exponent, and the exponent
Γ is related to the roughness exponent α by

α =
Γ − d

2
. (12)

The SCE method produces, to second order in this
expansion, two nonlinear coupled integral equations in φq

and ωq, that can be solved exactly in the asymptotic small
q limit to yield the required scaling exponents governing
the steady state behavior and the time evolution.

By defining Mq�m ≡ λρ√
Ω

q2−ρ (� · m) δq,�+m, Kq = Kq4

and Dq = D0q
2−2σ it can be seen that the NCKPZ equa-

tion is of the general form discussed in references [26,27],
where the SCE method is derived. Thus, the two coupled
non-linear integral equations can be obtained easily, and
read

Dq − Kqφq + 2
∑
�,m

Mq�mMq�mφ�φm

ωq + ω� + ωm

− 2
∑
�,m

Mq�mM�mqφmφq

ωq + ω� + ωm
− 2

∑
�,m

Mq�mMm�qφ�φq

ωq + ω� + ωm
= 0,

(13)

and
Kq − ωq − 2

∑
�,m

Mq�m
M�mqφm + Mm�qφ�

ω� + ωm
= 0, (14)

where in deriving the last equation the Herring consis-
tency equation [30] is used. In fact Herring’s definition of
ωq is one of many possibilities, each leading to a different
consistency equation. But it can be shown, as previously
done in reference [27], that this does not affect the expo-
nents (universality).

A full solution of equations (13) and (14) in the limit
of small q’s (i.e. large scales) yields a very rich family of
solutions that will not interest us here, but may be the
subject of a future detailed paper. Instead, I focus on the
strong coupling solutions obtained by SCE. As mentioned
above, two strong coupling solutions are obtained by SCE
(they are strong coupling solutions in the sense that they
do not exist when the coupling λ is set to zero), each of
them describes the critical exponents for a different set of
the parameters ρ, σ and d.

The first solution is obtained just by power count-
ing, and reads z = (d + 10 − 2ρ− 2σ)/3 and Γ =
(d + 4 − 2ρ + 4σ)/3. This solution is valid for ρ − 1 < σ,
d < 6 − 2σ + ρ, d < 2 + 2σ + 2ρ and d < 8 + 2σ − 4ρ.
Therefore, by direct inspection, this solution is not valid
for the one-dimensional case with ρ = 2 + 2σ, and hence
does not and is not expected to recover the exact Gaus-
sian result obtained in reference [24]. It should also be
mentioned that when translated to frequently used nota-
tion (using Eq. (12)) it can be seen that this solution is
actually the same as the one obtained by the DRG anal-
ysis as in equation (5). In that sense the SCE approach
agrees with the DRG analysis in that this solution is a
strong-coupling one, and not a weak-coupling solution as
claimed in references [22,23].

The second solution is a non power counting solution.
It turns out that for d = 1 equation (13) is exactly solv-
able, and yields Γ = ρ. This result is actually the exact
Gaussian solution of the one-dimensional case, mentioned
above. In addition, from equation (14), the dynamical ex-
ponent can be extracted for a certain range of the param-
eters, namely for 1 < ρ < 3 and ρ > (4σ + 5), where it
becomes z = (9 − 3ρ)/2.

For dimensionality higher than one (i.e. d ≥ 2)
such an exact solution in closed form cannot be found,
and the second strong coupling solution is deter-
mined from the combination of the scaling relation
z = (d + 8 − Γ − 2ρ)/2, and the transcendental equation
F (Γ, z, ρ) = 0, where F is given by

F (Γ, z, ρ) = −
∫

ddt
t · (ê − t)

tz + |ê − t|z + 1

[
(ê · t) |ê−t|2−ρ

t−Γ

+ê·(ê−t)t2−ρ|ê−t|−Γ
]
+

∫
ddt

[t · (ê−t)]2

tz+|ê−t|z+1
t−Γ |ê−t|−Γ

,

(15)

and ê is a unit vector in an arbitrary direction. The last
equation has to be solved numerically of course. In ad-
dition, this solution is valid as long as the solutions of
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the last equations satisfy the following four conditions:
d + 4 − 3Γ − 2ρ + 4σ < 0, d − 3Γ + 2ρ < 0, d < Γ and
d − 4 − Γ + 2ρ < 0.

It should be mentioned that SCE yields many other
“weak coupling” solutions to NCKPZ. They are called
“weak coupling” in the sense that they can be obtained
from a linear conserved growth problem with correlated
noise. These solutions are also not obtained by DRG nor
by the Scaling Approach.

In summary, in this paper two theoretical predictions
for the strong coupling phase of the NCKPZ model us-
ing DRG and a scaling approach were presented. It was
shown that these results are inconsistent with a recent ex-
act one-dimensional result obtained in reference [24]. This
discrepancy served as a motivation for the construction of
a Self Consistent Expansion (SCE) that made possible the
calculation of the critical exponents for the most general
case (i.e. any ρ, σ and d). I obtained two possible strong
coupling solutions. The first strong coupling solution is a
power counting one, and is identical to the previous result
of the DRG analysis (actually it was also obtained by the
Scaling Approach — however, it was mistakenly identi-
fied as a weak coupling one). The second strong coupling
solution is a non power counting solution, and is not ob-
tained by DRG nor by the Scaling Approach. For d = 1,
this solution turns out to be the exact Gaussian solution
obtained in reference [24].

In the context of roughening of colloidal systems, as
the interactions between a falling colloidal particle and an
interface is not known analytically, the results presented
here can useful in their systematic study. To begin with,
one can easily determine the range of the interactions by
measuring the roughness. One can also study the influence
of the geometry of the sample, the dimensionality, and
the possible electrostatic interaction between the colloidal
particles. Taking another direction, as equation (3) repro-
duces some of the measured features in a solid manner, it
could serve as an inspiration for a more rigorous evalua-
tion of the hydrodynamical interactions. It is more than
likely that the real interaction is much more complicated
than equation (3), but it can be the case that it captures
some leading order behavior such that subleading terms
are irrelevant in the RG sense [1]. An interesting option
is that once one determines the range of the interactions,
namely the parameter ρ in equation (3), from either ex-
perimental, numerical or analytical results, more detailed
properties could be obtained directly from the equation.

Coming back to the Dynamic Renormalization Group
approach, the reasons for its failure in recovering the ex-
act one-dimensional results for the nonlocal models are
not fully clear. It seems that DRG is not able to calcu-
late the strong-coupling solution because the propagator
of the linear theory G0 (q, ω) that is used in DRG in the
perturbative expansion is not a good candidate. If instead
an expansion is made around a different free model better
results can be achieved. It is suspected that the nonlinear
term generates a fractional relaxation term (namely a frac-
tional biharmonic operator) under renormalization. Thus,
the propagator should be modified. Actually, this idea

is implemented in the Self-Consistent Expansion. There-
fore, an application of that method to the exactly solv-
able model described above, indeed reproduces the exact
results. This suggests that there is an advantage in using
the SCE to deal with such nonlinear Langevin equations.

This work was supported by EEC PatForm Marie Curie ac-
tion (E.K.). I would like to thank Moshe Schwartz for useful
discussions. Laboratoire de Physique Statistique is associated
with Universities Paris VI and Paris VII.
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29. M. Lässig, Nucl. Phys. B 448, 559 (1995)

30. J.R. Herring, Phys. Fluids 8, 2219 (1965); J.R. Herring 9,
2106 (1966)

R
apide N

ote R
ap

id
 N

ot
e


